# cs224n lecture 15
# 개요
- Natural Language Generation
- large beam size
- Persona
- Sampling-based decoding
- Gigaword, LCSTS, NYT, CNN/DailyMail, Wikihow
- Simple Wikipedia, Newsela
- Extractive vs. abstractive summarization
- tf-idf
- ROUGE
- Pointer-Generator Networks
- Reinforcement Learning
- Mutual information
- Retrieve-and-refine model
- Skip-thought vectors
- METEOR
- Twitter, Ubuntu
- humanness vs. conversational quality
- Teacher forcing
NLG 에 대한 전반적인 내용과 decoding 알고리즘, NLG task 와 그에 대한 neural approaches. NLG evaluation a tricky situation. NLG cutting edge research trends.
# Natural Language Generation
Any setting in which we generate new text (e.g. decoder) NLG 는 machine translation, summarization, dialogue, creative writing, freefrom question answering(answer is generated, not extracted - different from squad), Image captioning 의 subcomponent 들이다.
참고로 Language Momdeling은 다음 단어를 예측하는 모델이다.(given words so far) $$ P(y_t|y_1, \ldots, y_{t-1} ) $$ 해서 이러한 probability distribution 을 생성하는 시스템을 Language Momdel이라고 한다.
Conditional Language Modeling : the task of predicting the next word, given the words so far, and also some other input
- large beam size
- Persona
- Sampling-based decoding
- Gigaword, LCSTS, NYT, CNN/DailyMail, Wikihow
- Simple Wikipedia, Newsela
- Extractive vs. abstractive summarization
- tf-idf
- ROUGE
- Pointer-Generator Networks
- Reinforcement Learning
- Mutual information
- Retrieve-and-refine model
- Skip-thought vectors
- METEOR
- Twitter, Ubuntu
- humanness vs. conversational quality
- Teacher forcing