# cs224n lecture 15

# 개요

  • Natural Language Generation
  • large beam size
  • Persona
  • Sampling-based decoding
  • Gigaword, LCSTS, NYT, CNN/DailyMail, Wikihow
  • Simple Wikipedia, Newsela
  • Extractive vs. abstractive summarization
  • tf-idf
  • ROUGE
  • Pointer-Generator Networks
  • Reinforcement Learning
  • Mutual information
  • Retrieve-and-refine model
  • Skip-thought vectors
  • METEOR
  • Twitter, Ubuntu
  • humanness vs. conversational quality
  • Teacher forcing

NLG 에 대한 전반적인 내용과 decoding 알고리즘, NLG task 와 그에 대한 neural approaches. NLG evaluation a tricky situation. NLG cutting edge research trends.

# Natural Language Generation

Any setting in which we generate new text (e.g. decoder) NLG 는 machine translation, summarization, dialogue, creative writing, freefrom question answering(answer is generated, not extracted - different from squad), Image captioning 의 subcomponent 들이다.

참고로 Language Momdeling은 다음 단어를 예측하는 모델이다.(given words so far) $$ P(y_t|y_1, \ldots, y_{t-1} ) $$ 해서 이러한 probability distribution 을 생성하는 시스템을 Language Momdel이라고 한다.

Conditional Language Modeling : the task of predicting the next word, given the words so far, and also some other input

  • large beam size
  • Persona
  • Sampling-based decoding
  • Gigaword, LCSTS, NYT, CNN/DailyMail, Wikihow
  • Simple Wikipedia, Newsela
  • Extractive vs. abstractive summarization
  • tf-idf
  • ROUGE
  • Pointer-Generator Networks
  • Reinforcement Learning
  • Mutual information
  • Retrieve-and-refine model
  • Skip-thought vectors
  • METEOR
  • Twitter, Ubuntu
  • humanness vs. conversational quality
  • Teacher forcing
Last Updated: 8/3/2020, 9:54:50 AM